3.166 \(\int \frac{(a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=181 \[ -\frac{(2+2 i) a^{3/2} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a (5 B+6 i A) \sqrt{a+i a \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{4 a (9 A-10 i B) \sqrt{a+i a \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{5 d \tan ^{\frac{5}{2}}(c+d x)} \]

[Out]

((-2 - 2*I)*a^(3/2)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2
*a*A*Sqrt[a + I*a*Tan[c + d*x]])/(5*d*Tan[c + d*x]^(5/2)) - (2*a*((6*I)*A + 5*B)*Sqrt[a + I*a*Tan[c + d*x]])/(
15*d*Tan[c + d*x]^(3/2)) + (4*a*(9*A - (10*I)*B)*Sqrt[a + I*a*Tan[c + d*x]])/(15*d*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.550267, antiderivative size = 181, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {3593, 3598, 12, 3544, 205} \[ -\frac{(2+2 i) a^{3/2} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a (5 B+6 i A) \sqrt{a+i a \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{4 a (9 A-10 i B) \sqrt{a+i a \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{5 d \tan ^{\frac{5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(7/2),x]

[Out]

((-2 - 2*I)*a^(3/2)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2
*a*A*Sqrt[a + I*a*Tan[c + d*x]])/(5*d*Tan[c + d*x]^(5/2)) - (2*a*((6*I)*A + 5*B)*Sqrt[a + I*a*Tan[c + d*x]])/(
15*d*Tan[c + d*x]^(3/2)) + (4*a*(9*A - (10*I)*B)*Sqrt[a + I*a*Tan[c + d*x]])/(15*d*Sqrt[Tan[c + d*x]])

Rule 3593

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(a^2*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^
(n + 1))/(d*f*(b*c + a*d)*(n + 1)), x] - Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
 d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m -
 1) + b*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ
[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3598

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*d - B*c)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f
*(n + 1)*(c^2 + d^2)), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac{7}{2}}(c+d x)} \, dx &=-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{5 d \tan ^{\frac{5}{2}}(c+d x)}+\frac{2}{5} \int \frac{\sqrt{a+i a \tan (c+d x)} \left (\frac{1}{2} a (6 i A+5 B)-\frac{1}{2} a (4 A-5 i B) \tan (c+d x)\right )}{\tan ^{\frac{5}{2}}(c+d x)} \, dx\\ &=-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{2 a (6 i A+5 B) \sqrt{a+i a \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{4 \int \frac{\sqrt{a+i a \tan (c+d x)} \left (-\frac{1}{2} a^2 (9 A-10 i B)-\frac{1}{2} a^2 (6 i A+5 B) \tan (c+d x)\right )}{\tan ^{\frac{3}{2}}(c+d x)} \, dx}{15 a}\\ &=-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{2 a (6 i A+5 B) \sqrt{a+i a \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{4 a (9 A-10 i B) \sqrt{a+i a \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}+\frac{8 \int -\frac{15 a^3 (i A+B) \sqrt{a+i a \tan (c+d x)}}{4 \sqrt{\tan (c+d x)}} \, dx}{15 a^2}\\ &=-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{2 a (6 i A+5 B) \sqrt{a+i a \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{4 a (9 A-10 i B) \sqrt{a+i a \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-(2 a (i A+B)) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{2 a (6 i A+5 B) \sqrt{a+i a \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{4 a (9 A-10 i B) \sqrt{a+i a \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-\frac{\left (4 a^3 (A-i B)\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac{(2+2 i) a^{3/2} (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a A \sqrt{a+i a \tan (c+d x)}}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{2 a (6 i A+5 B) \sqrt{a+i a \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{4 a (9 A-10 i B) \sqrt{a+i a \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 8.64099, size = 237, normalized size = 1.31 \[ \frac{a (A-i B) e^{-3 i (c+d x)} \sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \left (1+e^{2 i (c+d x)}\right )^2 (\tan (c+d x)-i) \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right ) \sqrt{a+i a \tan (c+d x)}}{d \sqrt{-1+e^{2 i (c+d x)}}}-\frac{a \csc ^2(c+d x) \sqrt{a+i a \tan (c+d x)} ((5 B+6 i A) \sin (2 (c+d x))+(21 A-20 i B) \cos (2 (c+d x))-15 A+20 i B)}{15 d \sqrt{\tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(7/2),x]

[Out]

-(a*Csc[c + d*x]^2*(-15*A + (20*I)*B + (21*A - (20*I)*B)*Cos[2*(c + d*x)] + ((6*I)*A + 5*B)*Sin[2*(c + d*x)])*
Sqrt[a + I*a*Tan[c + d*x]])/(15*d*Sqrt[Tan[c + d*x]]) + (a*(A - I*B)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1
 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))^2*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]]*(
-I + Tan[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]])/(d*E^((3*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))])

________________________________________________________________________________________

Maple [B]  time = 0.043, size = 707, normalized size = 3.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x)

[Out]

-1/30/d*(a*(1+I*tan(d*x+c)))^(1/2)*a/tan(d*x+c)^(5/2)*(-72*A*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2*(a*tan(d*x+
c)*(1+I*tan(d*x+c)))^(1/2)+60*I*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)
+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)^3*a-15*I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+
c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^3*a+80*I*B*(I*a)^(1/2)*(-I*a)^(1/2)*
tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+60*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+
c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)^3*a+30*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+
c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)^3*a-15*(I*a)^(1/2)*2^(1/2)*ln(-
(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^
3*a+24*I*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*(I*a)^(1/2)*tan(d*x+c)-30*ln(1/2*(2*I*a*tan(d*x+
c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)^3*a+20*B*(I*a)^
(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+12*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)
*(-I*a)^(1/2)*(I*a)^(1/2))/(I*a)^(1/2)/(-I*a)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.77383, size = 1598, normalized size = 8.83 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

1/30*(sqrt(2)*((108*I*A + 100*B)*a*e^(6*I*d*x + 6*I*c) + (-12*I*A - 60*B)*a*e^(4*I*d*x + 4*I*c) + (-60*I*A - 1
00*B)*a*e^(2*I*d*x + 2*I*c) + (60*I*A + 60*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c
) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - 15*sqrt((8*I*A^2 + 16*A*B - 8*I*B^2)*a^3/d^2)*(d*e^(6*I*d*
x + 6*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((2*I*A + 2*B)*a*e^(2*I*d*x +
 2*I*c) + (2*I*A + 2*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2
*I*c) + 1))*e^(I*d*x + I*c) + sqrt((8*I*A^2 + 16*A*B - 8*I*B^2)*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x -
2*I*c)/((2*I*A + 2*B)*a)) + 15*sqrt((8*I*A^2 + 16*A*B - 8*I*B^2)*a^3/d^2)*(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*
d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((2*I*A + 2*B)*a*e^(2*I*d*x + 2*I*c) + (2*I*A + 2*B)*
a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I
*c) - sqrt((8*I*A^2 + 16*A*B - 8*I*B^2)*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 2*B)*a)
))/(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.52655, size = 285, normalized size = 1.57 \begin{align*} -\frac{-\left (i - 1\right ) \, \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{5} +{\left (-\left (2 i + 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{4} + \left (2 i + 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{5}\right )} \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} \sqrt{i \, a \tan \left (d x + c\right ) + a} B}{2 \,{\left ({\left (i \, a \tan \left (d x + c\right ) + a\right )}^{5} a - 6 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{4} a^{2} + 14 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a^{3} - 16 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{4} + 9 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{5} - 2 \, a^{6}\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="giac")

[Out]

-1/2*(-(I - 1)*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(I*a*tan(d*x + c) + a)^2*a^5 + (-(2*I + 2)*(I*a*tan(d
*x + c) + a)^2*a^4 + (2*I + 2)*(I*a*tan(d*x + c) + a)*a^5)*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*sqrt(I*a*
tan(d*x + c) + a)*B)/(((I*a*tan(d*x + c) + a)^5*a - 6*(I*a*tan(d*x + c) + a)^4*a^2 + 14*(I*a*tan(d*x + c) + a)
^3*a^3 - 16*(I*a*tan(d*x + c) + a)^2*a^4 + 9*(I*a*tan(d*x + c) + a)*a^5 - 2*a^6)*d)